32063 measured reflections

 $R_{\rm int} = 0.076$

3734 independent reflections

3177 reflections with $I > 2\sigma(I)$

mm

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-Bromophenyl)-2-ethylsulfinyl-2-(phenylselanyl)ethanone monohydrate

Julio Zukerman-Schpector,^a* Carlos A. De Simone,^b Paulo R. Olivato,^c Carlos R. Cerqueira Jr^c and Edward R. T. Tiekink^d

^aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, ^bInstituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil, ^cChemistry Institute, Universidade de São Paulo, 05508-000 São Paulo-SP, Brazil, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: julio@power.ufscar.br

Received 3 April 2011; accepted 5 April 2011

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.005 Å; R factor = 0.037; wR factor = 0.095; data-to-parameter ratio = 18.7.

In the title hydrate, $C_{16}H_{15}BrO_2SSe \cdot H_2O$, the sulfinyl O atom lies on the opposite side of the molecule to the Se and carbonyl O atoms. The benzene rings form a dihedral angle of 51.66 $(17)^{\circ}$ and are splayed with respect to each other. The observed conformation allows the water molecules to bridge sulfinyl O atoms via $O-H \cdots O$ hydrogen bonds, generating a linear supramolecular chain along the b axis; the chain is further stabilized by $C-H \cdots O$ contacts. The chains are held in place in the crystal structure by $C \cdots H \cdots \pi$ and $C - Br \cdots \pi$ interactions.

Related literature

For background to β , β -bis-substituted-carbonyl compounds, see: Reis et al. (2006). For related structures, see: Olivato et al. (2004); Zukerman-Schpector et al. (2009, 2010). For details of the synthetic protocols, see: Long (1946); Leonard & Johnson (1962); Zoretic & Soja (1976).

Experimental

Crystal data

C ₁₆ H ₁₅ BrO ₂ SSe·H ₂ O	V = 1773.30 (5) Å ²
$M_r = 448.23$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 14.6942 (2) Å	$\mu = 4.50 \text{ mm}^{-1}$
b = 6.1103 (1) Å	$T = 290 { m K}$
c = 21.5717 (4) Å	$0.36 \times 0.19 \times 0.16$
$\beta = 113.714 \ (1)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.291, T_{\max} = 0.734$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	200 parameters
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^{-3}$
3734 reflections	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C5-C10 and C11-C16 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1w−H1w···O2 ⁱ	0.85	1.95	2.788 (4)	169
O1w−H2w···O2	0.84	1.99	2.810 (4)	165
$C2-H2 \cdot \cdot \cdot O1w^i$	0.98	2.40	3.334 (4)	159
$C3-H3b\cdots O1w^{i}$	0.97	2.54	3.434 (4)	153
C9−H9· · ·O1w ⁱⁱ	0.93	2.55	3.320 (4)	141
C10−H10···O2 ⁱⁱ	0.93	2.58	3.456 (4)	157
$C14-H14\cdots Cg1^{iii}$	0.93	2.96	3.793 (5)	149
$C8 - Br \cdots Cg2^{iv}$	1.90 (1)	3.49 (1)	5.349 (3)	165 (1)
	. 1	1		1 1 4 5

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y - 1, z; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x, -y - \frac{1}{2}, z - \frac{1}{2}$

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

We thank the Brazilian agencies FAPESP, CNPq (fellowships to JZS and PRO) and CAPES (808/2009 to JZS) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5022).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Chemaxon (2010). Marvinsketch. http://www.chemaxon.com.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Leonard, N. J. & Johnson, C. R. (1962). J. Org. Chem. 27, 282-284.

Long, L. M. (1946). J. Am. Chem. Soc. 68, 2159-2161.

- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Olivato, P. R., Reis, A. K. C. A., Rodrigues, A., Zukerman-Schpector, J., Tormena, C. F., Rittner, R. & Dal Colle, M. (2004). J. Mol. Struct. 707, 199– 210.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Reis, A. K. C. A., Olivato, P. R., Zukerman-Schpector, J., Tormena, C. F. J., Rittner, R. & Dal Colle, M. (2006). J. Mol. Struct. 798, 57–63.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587-3589.
- Zukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R., Santos, J. M. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1863.
- Zukerman-Schpector, J., Vinhato, E., Olivato, P. R., Rodrigues, A., Dal Colle, M., Cerqueira, C. R. Jr, Arman, H. D. & Tiekink, E. R. T. (2009). Z. Kristallogr. 224, 484–492.

Acta Cryst. (2011). E67, o1099-o1100 [doi:10.1107/S1600536811012712]

1-(4-Bromophenyl)-2-ethylsulfinyl-2-(phenylselanyl)ethanone monohydrate

J. Zukerman-Schpector, C. A. De Simone, P. R. Olivato, C. R. Cerqueira Jr and E. R. T. Tiekink

Comment

As part of our on-going research on the conformational and electronic interactions in some β , β -substituted-carbonyl compounds, *e.g.* 4'-substituted 2-(bromo)-2-(ethylsulfonyl)- and 4'-substituted 2-(methylthio)-2-(diethoxyphosphoryl)]-acet-ophenones, and 3,3-bis[(4'-chlorophenyl)thio]-1-methylpiperidin-2-one, using theoretical, spectroscopic and X-ray diffraction methods (Olivato *et al.*, 2004; Reis *et al.*, 2006; Zukerman-Schpector *et al.*, 2009; Zukerman-Schpector *et al.*, 2010), the title hydrate, (I), was synthesized and its crystal structure determined, Fig. 1.

With reference to the pyramidal-S atom, the sulfinyl-O lies to the opposite side of the molecule to each of the Se and carbonyl-O atoms. This conformation allows for the formation of supramolecular chains mediated by the sulfinyl-O and water molecules, see below. The benzene rings are splayed with respect to each other as seen in the value of the C1—C2—Se—C11 torsion angle of -27.7 (2) °; the dihedral angle formed between the rings is 51.66 (17) °.

In the crystal packing, the water molecules bridge sulfinyl-O atoms *via* O—H···O hydrogen bonds to form a linear supramolecular chain along the *b* axis, Fig. 2 and Table 1. Chains are stabilized by a series of C—H···O interactions, Table 1, and are held in place by C—H··· π (aryl-Br) and C—Br··· π (aryl-Se) interactions, Fig. 3 and Table 1.

Experimental

Following the procedure of Long (1946), a solution of potassium hydroxide (400 mg, 7.2 mmol) and ethanothiol (0.5 ml, 7.2 mmol) in ethanol (10 ml) was added to a solution of 2-bromo-4'-bromoacetophenone (2.0 g, 7.2 mmol) in ethanol, to give 2-ethylthio-4'-bromoacetophenone (1.6 g, yield = 86%). The product was isolated and oxidized with 12 ml of an aqueous solution of sodium periodate (0.5 M) in acetonitrile (16 ml), after Leonard & Johnson (1962), to give 2-ethylsulfinyl-4'-bromoacetophenone that was extracted with dichloromethane and dried over anhydrous magnesium sulfate. 2-Ethylsulfinyl-4'bromoacetophenone (730 mg, 2.6 mmol) was added drop-wise to a cooled (195 K) solution of diisopropylamine (0.4 ml, 2.6 mmol) and butyllithium (2.3 ml, 2.6 mmol) in THF (20 ml). After 20 minutes, phenylselenilbromide (610 mg, 2.6 mmol) dissolved in THF (10 ml) was added drop-wise to the enolate solution (Zoretic and Soja, 1976). After stirring for 3 h at 195 K, water (50 ml) was added at room temperature and extraction with chloroform was performed. The organic layer was dried over anhydrous magnesium sulfate. After evaporation of solvent, a crude solid was obtained. Purification through flash chromatography with a solution of hexane and ethyl acetate in a 1:1 ratio gave a mixture of the two possible diastereoisomers (500 mg, yield = 45%). One of the diastereoisomers was separated by recrystallization at low temperature (283 K) from chloroform. Suitable crystals for X-ray analysis were obtained by vapour diffusion of n-hexane into its chloroform solution at 283 K; *M*.pt. 366–367 K. IR (cm⁻¹): v(C=O) 1670, v(S=O) 993. NMR (CDCl₃, p.p.m.): δ 1.42–1.45 (3*H*, t ³J = 7.5 Hz), $2.92-2.99 (1H, dq, {}^{2}J = 13 Hz, {}^{3}J = 7.5 Hz), 3.32-3.25 (1H, dq, {}^{2}J = 13 Hz, {}^{3}J = 7.5 Hz), 5.44 (1H, s), 7.29-7.33 (2H, m, s)$ Aryl-H), 7.38–7.41 (1H, m, Aryl-H), 7.52–7.55 (2H, m, Aryl-H), 7.59–7.62 (2H, m, Aryl-H), 7.75–7.73 (2H, m, Aryl-H). Analysis found: C 42.76, H 3.84%. C16H15BrO2SSe.H2O requires: C 42.87, H 3.82%.

Refinement

The H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. Those of the water molecule were found in a difference map, fixed in those positions and refined with $U_{iso}(H) = 1.2U_{eq}(O)$; see Table 1 for distances.

Figures

Fig. 1. The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 35% probability level (arbitrary spheres for the H atoms).

Fig. 2. Supramolecular linear chain along the b axis in (I) mediated by O—H…O hydrogen bonding (orange dashed lines).

Fig. 3. View of the unit-cell contents in projection down the *b* axis in (I). Chains shown in Fig. 2, sustained by O–H···O hydrogen bonding (orange dashed lines), are held in place by C–H··· π and C–Br··· π contacts, shown as blue and purple dashed lines, respectively.

1-(4-Bromophenyl)-2-ethylsulfinyl-2-(phenylselanyl)ethanone monohydrate

Crystal data	
C ₁₆ H ₁₅ BrO ₂ SSe·H ₂ O	F(000) = 888
$M_r = 448.23$	$D_{\rm x} = 1.679 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 23524 reflections
a = 14.6942 (2) Å	$\theta = 2.6 - 26.7^{\circ}$
b = 6.1103 (1) Å	$\mu = 4.50 \text{ mm}^{-1}$
c = 21.5717 (4) Å	T = 290 K
$\beta = 113.714 (1)^{\circ}$	Plate, colourless
$V = 1773.30 (5) \text{ Å}^3$	$0.36\times0.19\times0.16~mm$
<i>Z</i> = 4	
Data collection	
Nonius KappaCCD	3734 independent reflections

diffractometer

Radiation source: sealed tube	3177 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.076$
CCD rotation images scans	$\theta_{\text{max}} = 26.7^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -18 \rightarrow 18$
$T_{\min} = 0.291, \ T_{\max} = 0.734$	$k = -7 \rightarrow 7$
32063 measured reflections	$l = -27 \rightarrow 25$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.095$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0428P)^{2} + 1.5141P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3734 reflections	$(\Delta/\sigma)_{max} < 0.001$
200 parameters	$\Delta \rho_{max} = 0.80 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.55 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.27316 (19)	0.2209 (5)	0.25810 (14)	0.0424 (6)
C2	0.36493 (19)	0.1572 (5)	0.32017 (13)	0.0419 (6)
H2	0.4114	0.0804	0.3055	0.050*
C3	0.5393 (2)	0.2846 (6)	0.42271 (17)	0.0593 (8)
H3A	0.5269	0.1896	0.4545	0.071*
H3B	0.5683	0.1973	0.3977	0.071*
C4	0.6102 (3)	0.4646 (8)	0.4605 (2)	0.0811 (12)
H4A	0.5806	0.5522	0.4844	0.122*
H4B	0.6243	0.5547	0.4290	0.122*
H4C	0.6709	0.4014	0.4922	0.122*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C5	0.23970 (19)	0.0756 (5)	0.19795 (14)	0.0409 (6)
C6	0.1669 (2)	0.1548 (5)	0.13798 (15)	0.0488 (6)
Н6	0.1396	0.2925	0.1373	0.059*
C7	0.1349 (2)	0.0315 (5)	0.07957 (16)	0.0544 (7)
H7	0.0868	0.0854	0.0395	0.065*
C8	0.1756 (2)	-0.1734 (5)	0.08164 (15)	0.0503 (7)
C9	0.2473 (2)	-0.2565 (5)	0.14005 (16)	0.0506 (7)
Н9	0.2736	-0.3952	0.1405	0.061*
C10	0.2796 (2)	-0.1304 (5)	0.19819 (15)	0.0470 (6)
H10	0.3287	-0.1843	0.2379	0.056*
C11	0.1967 (2)	0.0520 (5)	0.36178 (14)	0.0468 (6)
C12	0.1754 (3)	0.2435 (6)	0.38661 (18)	0.0612 (8)
H12	0.2261	0.3392	0.4116	0.073*
C13	0.0772 (3)	0.2921 (7)	0.3739 (2)	0.0709 (10)
H13	0.0618	0.4222	0.3900	0.085*
C14	0.0026 (3)	0.1487 (8)	0.33776 (19)	0.0722 (10)
H14	-0.0631	0.1809	0.3298	0.087*
C15	0.0248 (3)	-0.0399 (8)	0.3137 (2)	0.0713 (10)
H15	-0.0259	-0.1368	0.2894	0.086*
C16	0.1217 (2)	-0.0899 (6)	0.32472 (17)	0.0577 (8)
H16	0.1362	-0.2181	0.3073	0.069*
01	0.22999 (15)	0.3895 (3)	0.25913 (11)	0.0532 (5)
02	0.45208 (18)	0.5313 (4)	0.31552 (12)	0.0643 (6)
O1W	0.4391 (2)	0.4022 (4)	0.18722 (14)	0.0729 (7)
H1W	0.4651	0.2794	0.1849	0.088*
H2W	0.4411	0.4158	0.2263	0.088*
S	0.42388 (5)	0.40496 (12)	0.36491 (4)	0.04610 (18)
Se	0.33094 (2)	-0.03515 (6)	0.380920 (17)	0.05674 (12)
Br	0.13073 (3)	-0.34569 (7)	0.001765 (19)	0.07905 (15)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0385 (13)	0.0460 (15)	0.0428 (15)	-0.0001 (11)	0.0165 (11)	0.0043 (11)
C2	0.0366 (13)	0.0488 (15)	0.0393 (14)	0.0033 (11)	0.0143 (11)	-0.0005 (11)
C3	0.0458 (16)	0.077 (2)	0.0477 (17)	-0.0005 (15)	0.0116 (13)	-0.0088 (16)
C4	0.054 (2)	0.114 (3)	0.067 (2)	-0.015 (2)	0.0156 (18)	-0.030 (2)
C5	0.0351 (12)	0.0465 (14)	0.0402 (14)	-0.0005 (11)	0.0144 (11)	0.0018 (11)
C6	0.0438 (14)	0.0497 (16)	0.0474 (16)	0.0058 (12)	0.0127 (12)	0.0029 (12)
C7	0.0494 (16)	0.0604 (18)	0.0426 (16)	0.0017 (14)	0.0073 (13)	0.0028 (13)
C8	0.0491 (15)	0.0589 (18)	0.0440 (15)	-0.0071 (13)	0.0199 (13)	-0.0048 (13)
C9	0.0498 (15)	0.0490 (16)	0.0527 (17)	0.0008 (13)	0.0203 (13)	-0.0028 (13)
C10	0.0410 (14)	0.0505 (16)	0.0442 (15)	0.0017 (12)	0.0116 (12)	0.0036 (12)
C11	0.0484 (15)	0.0545 (16)	0.0403 (15)	-0.0053 (12)	0.0207 (12)	0.0044 (12)
C12	0.0638 (19)	0.062 (2)	0.0597 (19)	-0.0092 (16)	0.0271 (16)	-0.0088 (16)
C13	0.078 (2)	0.077 (2)	0.070 (2)	0.0102 (19)	0.043 (2)	-0.0010 (19)
C14	0.0531 (19)	0.109 (3)	0.061 (2)	0.003 (2)	0.0298 (17)	0.014 (2)
C15	0.0543 (19)	0.099 (3)	0.062 (2)	-0.0205 (19)	0.0248 (17)	-0.007 (2)

C16	0.0591 (18)	0.0643 (19)	0.0530 (18)	-0.0161 (15)	0.0260 (15)	-0.0090 (15)
01	0.0507 (11)	0.0509 (11)	0.0526 (12)	0.0099 (9)	0.0149 (9)	-0.0012 (9)
02	0.0661 (14)	0.0659 (14)	0.0611 (14)	-0.0174 (11)	0.0258 (12)	0.0026 (11)
O1W	0.0846 (17)	0.0675 (15)	0.0766 (17)	0.0192 (13)	0.0428 (14)	0.0114 (13)
S	0.0449 (4)	0.0504 (4)	0.0427 (4)	-0.0023 (3)	0.0172 (3)	-0.0049 (3)
Se	0.05056 (19)	0.0595 (2)	0.0579 (2)	0.00582 (13)	0.01947 (15)	0.01869 (14)
Br	0.0929 (3)	0.0816 (3)	0.0526 (2)	-0.0047 (2)	0.01875 (19)	-0.02037 (18)
Geometric paran	neters (Å, °)					
C1—01		1.215 (3)	C8—	Br	1.897	(3)
C1—C5		1.483 (4)	С9—	C10	1.383	(4)
C1—C2		1.520 (4)	С9—	H9	0.9300)
C2—S		1.817 (3)	C10–	-H10	0.9300)
C2—Se		1.969 (3)	C11–	C12	1.375	(5)
С2—Н2		0.9800	C11–	C16	1.377	(4)
C3—C4		1.509 (5)	C11–	–Se	1.920	(3)
C3—S		1.809 (3)	C12-	C13	1.388	(5)
С3—НЗА		0.9700	C12-	-H12	0.9300)
С3—Н3В		0.9700	C13–	C14	1.375	(6)
C4—H4A		0.9600	C13–	-H13	0.9300)
C4—H4B		0.9600	C14-	C15	1.357	(6)
C4—H4C		0.9600	C14-	-H14	0.9300)
C5—C10		1.388 (4)	C15–	C16	1.380	(5)
C5—C6		1.392 (4)	C15–	-H15	0.9300)
С6—С7		1.378 (4)	C16–	-H16	0.9300)
С6—Н6		0.9300	O2—	S	1.503	(2)
С7—С8		1.380 (4)	O1W	—H1W	0.8525	5
С7—Н7		0.9300	O1W	—H2W	0.8362	2
С8—С9		1.374 (4)				
O1—C1—C5		122.1 (2)	С9—	C8—Br	119.1	(2)
O1—C1—C2		119.1 (3)	С7—	C8—Br	119.1	(2)
C5—C1—C2		118.8 (2)	C8—	C9—C10	118.8	(3)
C1—C2—S		108.62 (19)	C8—	С9—Н9	120.6	
C1—C2—Se		111.50 (17)	C10–	—С9—Н9	120.6	
S—C2—Se		109.77 (14)	С9—	C10—C5	120.8	(3)
C1—C2—H2		109.0	С9—	C10—H10	119.6	
S-C2-H2		109.0	С5—	C10—H10	119.6	
Se—C2—H2		109.0	C12-	C11C16	120.4	(3)
C4—C3—S		109.2 (3)	C12-	C11Se	121.9	(2)
С4—С3—Н3А		109.8	C16–	C11Se	117.6	(2)
S—C3—H3A		109.8	C11–	-C12-C13	119.2	(3)
С4—С3—Н3В		109.8	C11–	C12H12	120.4	
S—C3—H3B		109.8	C13-	C12H12	120.4	
НЗА—СЗ—НЗВ		108.3	C14–	C13C12	120.2	(4)
С3—С4—Н4А		109.5	C14–	-С13—Н13	119.9	
С3—С4—Н4В		109.5	C12–	—С13—Н13	119.9	
H4A—C4—H4B		109.5	C15-	C14C13	119.9	(3)
С3—С4—Н4С		109.5	C15-	C14H14	120.0	

Н4А—С4—Н4С	109.5	C13—C14—H14	120.0
H4B—C4—H4C	109.5	C14—C15—C16	120.8 (3)
C10—C5—C6	118.9 (3)	C14—C15—H15	119.6
C10-C5-C1	123.3 (2)	С16—С15—Н15	119.6
C6—C5—C1	117.7 (2)	C11—C16—C15	119.4 (3)
C7—C6—C5	120.8 (3)	C11—C16—H16	120.3
С7—С6—Н6	119.6	C15—C16—H16	120.3
С5—С6—Н6	119.6	H1W—O1W—H2W	108.1
C6—C7—C8	118.8 (3)	O2—S—C3	104.37 (15)
С6—С7—Н7	120.6	O2—S—C2	105.07 (13)
С8—С7—Н7	120.6	C3—S—C2	98.16 (14)
C9—C8—C7	121.8 (3)	C11—Se—C2	101.82 (11)
O1—C1—C2—S	-28.1 (3)	C16-C11-C12-C13	0.1 (5)
C5—C1—C2—S	151.4 (2)	Se-C11-C12-C13	-176.7 (3)
O1—C1—C2—Se	93.0 (3)	C11-C12-C13-C14	0.9 (5)
C5—C1—C2—Se	-87.5 (2)	C12-C13-C14-C15	-0.8 (6)
O1—C1—C5—C10	-171.6 (3)	C13-C14-C15-C16	-0.3 (6)
C2-C1-C5-C10	8.9 (4)	C12-C11-C16-C15	-1.1 (5)
O1—C1—C5—C6	10.6 (4)	Se-C11-C16-C15	175.8 (3)
C2—C1—C5—C6	-168.9 (2)	C14-C15-C16-C11	1.3 (6)
C10-C5-C6-C7	-0.2 (4)	C4—C3—S—O2	64.1 (3)
C1—C5—C6—C7	177.7 (3)	C4—C3—S—C2	172.0 (3)
C5—C6—C7—C8	0.7 (5)	C1—C2—S—O2	-61.3 (2)
C6—C7—C8—C9	-0.5 (5)	Se—C2—S—O2	176.53 (14)
C6—C7—C8—Br	179.2 (2)	C1—C2—S—C3	-168.7 (2)
C7—C8—C9—C10	-0.2 (5)	Se—C2—S—C3	69.18 (16)
Br—C8—C9—C10	-179.9 (2)	C12-C11-Se-C2	-76.2 (3)
C8—C9—C10—C5	0.7 (4)	C16-C11-Se-C2	106.9 (2)
C6—C5—C10—C9	-0.5 (4)	C1—C2—Se—C11	-27.7 (2)
C1—C5—C10—C9	-178.3 (3)	S-C2-Se-C11	92.67 (15)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the	he C5–C10 and C11–C16 ri	ngs, respectively.		
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1w—H1w···O2 ⁱ	0.85	1.95	2.788 (4)	169
O1w—H2w····O2	0.84	1.99	2.810 (4)	165
C2—H2···O1w ⁱ	0.98	2.40	3.334 (4)	159
C3—H3b···O1w ⁱ	0.97	2.54	3.434 (4)	153
C9—H9…O1w ⁱⁱ	0.93	2.55	3.320 (4)	141
C10—H10····O2 ⁱⁱ	0.93	2.58	3.456 (4)	157
C14—H14····Cg1 ⁱⁱⁱ	0.93	2.96	3.793 (5)	149
C8—Br····Cg2 ^{iv}	1.897 (3)	3.4921 (16)	5.349 (3)	165.34 (10)
Symmetry and α ; (i) $w + 1 + w + 1/2 = -1$	1/2; (ii) 1 (iii) $1/2$	$2 = \frac{1}{2}$ (iv) $a = 1$	1/2 = 1/2	

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) x, y-1, z; (iii) -x, y+1/2, -z+1/2; (iv) x, -y-1/2, z-1/2.

